Correlation between compositional and mechanical properties of human mesenchymal stem cell-collagen microspheres during chondrogenic differentiation.
نویسندگان
چکیده
Mesenchymal stem cell (MSC)-based engineering is promising for cartilage repair. However, the compositional mechanical relationship of the engineered structures has not been extensively studied, given the importance of such relationship in native cartilage tissues. In this study, a novel human MSC-collagen microsphere system was used to study the compositional mechanical relationship during in vitro chondrogenic differentiation using histological and biochemical methods and a microplate compression assay. The mechanical property was found positively correlating with newly deposited cartilage-relevant matrices, glycosaminoglycan, and type II collagen, and with the collagen crosslinker density, in agreement with the presence of thick collagen bundles upon structural characterization. On the other hand, the mechanical property negatively correlates with type I collagen and total collagen, suggesting that the initial collagen matrix scaffold of the microsphere system was being remodeled by the differentiating human MSCs. This study also demonstrated the application of a simple, sensitive, and nondestructive tool for monitoring the progression of chondrogenic differentiation of MSCs in tissue-engineered constructs and therefore contributes to future development of novel cartilage repair strategies.
منابع مشابه
Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملEffects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells
In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...
متن کاملInduction of mesenchymal stem cell differentiation and cartilage formation by cross-linker-free collagen microspheres.
Because of poor self-healing ability, joint cartilage can undergo irreversible degradation in the course of various diseases or after injury. A promising approach for cartilage engineering consists of using of mesenchymal stem cells (MSC) and a differentiation factor combined with an injectable carrier biomaterial. We describe here a novel synthesis route for native collagen microspheres that d...
متن کاملStudy of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells
Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...
متن کاملInduced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System
Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering. Part A
دوره 17 5-6 شماره
صفحات -
تاریخ انتشار 2011